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• Functional analysis is the child of the 20th 
century (Stefan Banach, Hilbert, Lebesgue)

• Fourier, Riemann, Lebesgue

History
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for some numbers α2n. Then, by Lemma 3.17,

0 = (e1, e2m) = lim
k→∞

( k∑

n=1

α2ne2n, e2m

)
= α2m,

for all m ∈ N, and hence e1 =
∑∞

n=1 α2ne2n = 0, which contradicts the or-
thonormality of the sequence {en}. "#

We now give various conditions which ensure that (3.5) holds for all x ∈ H.

Theorem 3.47

Let H be a Hilbert space and let {en} be an orthonormal sequence in H. The
following conditions are equivalent:

(a) {en : n ∈ N}⊥ = {0};

(b) Sp {en : n ∈ N} = H;

(c) ‖x‖2 =
∑∞

n=1 |(x, en)|2 for all x ∈ H;

(d) x =
∑∞

n=1(x, en)en for all x ∈ H.

Proof

(a)⇒(d) Let x ∈ H and let y = x −
∑∞

n=1(x, en)en. For each m ∈ N,

(y, em) = (x, em) − lim
k→∞

( k∑

n=1

(x, en)en, em

)
(by Lemma 3.17)

= (x, em) − lim
k→∞

k∑

n=1

(x, en)(en, em)

= (x, em) − (x, em) = 0.

Therefore property (a) implies that y = 0, and so x =
∑∞

n=1(x, en)en for
any x ∈ H. Hence, property (d) holds.

(d)⇒ (b) For any x ∈ H, x = lim
k→∞

∑k
n=1(x, en)en. But

∑k
n=1(x, en)en ∈

Sp {e1, . . . , ek}, so x ∈ Sp {en : n ∈ N}, which is property (b).

(d)⇒(c) This follows immediately from Theorem 3.22.

(b)⇒ (a) Suppose that y ∈ {en : n ∈ N}⊥. Then (y, en) = 0 for all n ∈ N,
and so en ∈ {y}⊥, for all n ∈ N. But by part (f) of Lemma 3.29, {y}⊥ is a
closed linear subspace, so this shows that H = Sp {en} ⊂ {y}⊥. It follows
that y ∈ {y}⊥, hence (y, y) = 0, and so y = 0.
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• Linear algebra (vector spaces)

• Analysis (calculus)

• Measure and integration

Ingredients
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Why?

• We want problems to have solutions

• We want the solutions to be unique

• We want to be able to calculate 
(approximate) the solution
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Examples

• Solving equations:                                                           
N  →  Z  →  Q  →  R  →  C  ...

• Existence, uniqueness, computation of Fourier series  ...  
connections to solutions of differential equations ... 
eigen-values and eigen-functions ...                             
waves sound light heat quantum physics ...

• We want problems to have solutions

• We want the solutions to be unique

• We want to be able to calculate (approximate) the solution
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• Blackboard

• Homework

• Rynne and Youngson

• Schedule (Gill , de Jeu)

Bryan P. Rynne, Martin A. Youngson
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Preface

This book provides an introduction to the ideas and methods of linear func-
tional analysis at a level appropriate to the final year of an undergraduate
course at a British university. The prerequisites for reading it are a standard
undergraduate knowledge of linear algebra and real analysis (including the the-
ory of metric spaces).

Part of the development of functional analysis can be traced to attempts
to find a suitable framework in which to discuss differential and integral equa-
tions. Often, the appropriate setting turned out to be a vector space of real
or complex-valued functions defined on some set. In general, such a vector
space is infinite-dimensional. This leads to difficulties in that, although many
of the elementary properties of finite-dimensional vector spaces hold in infinite-
dimensional vector spaces, many others do not. For example, in general infinite-
dimensional vector spaces there is no framework in which to make sense of an-
alytic concepts such as convergence and continuity. Nevertheless, on the spaces
of most interest to us there is often a norm (which extends the idea of the
length of a vector to a somewhat more abstract setting). Since a norm on a
vector space gives rise to a metric on the space, it is now possible to do analysis
in the space. As real or complex-valued functions are often called functionals,
the term functional analysis came to be used for this topic.

We now briefly outline the contents of the book. In Chapter 1 we present
(for reference and to establish our notation) various basic ideas that will be
required throughout the book. Specifically, we discuss the results from elemen-
tary linear algebra and the basic theory of metric spaces which will be required
in later chapters. We also give a brief summary of the elements of the theory
of Lebesgue measure and integration. Of the three topics discussed in this in-
troductory chapter, Lebesgue integration is undoubtedly the most technically
difficult and the one which the prospective reader is least likely to have encoun-
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tered before. Unfortunately, many of the most important spaces which arise in
functional analysis are spaces of integrable functions, and it is necessary to use
the Lebesgue integral to overcome various drawbacks of the elementary Rie-
mann integral, commonly taught in real analysis courses. The reader who has
not met Lebesgue integration before can still read this book by accepting that
an integration process exists which coincides with the Riemann integral when
this is defined, but extends to a larger class of functions, and which has the
properties described in Section 1.3.

In Chapter 2 we discuss the fundamental concept of functional analysis, the
normed vector space. As mentioned above, a norm on a vector space is simply an
extension of the idea of the length of a vector to a rather more abstract setting.
Via an associated metric, the norm is behind all the discussion of convergence
and continuity in vector spaces in this book. The basic properties of normed
vector spaces are described in this chapter. In particular we begin the study of
Banach spaces which are complete normed vector spaces.

In finite dimensions, in addition to the length of a vector, the angle between
two vectors is also used. To extend this to more abstract spaces the idea of
an inner product on a vector space is introduced. This generalizes the well-
known “dot product” used in R3. Inner product spaces, which are vector spaces
possessing an inner product, are discussed in Chapter 3. Every inner product
space is a normed space and, as in Chapter 2, we find that the most important
inner product spaces are those which are complete. These are called Hilbert

spaces.
Having discussed various properties of infinite-dimensional vector spaces

the next step is to look at linear transformations between these spaces. The
most important linear transformations are the continuous ones, and these will
be called linear operators. In Chapter 4 we describe general properties of linear
operators between normed vector spaces. Any linear transformation between
finite-dimensional vector spaces is automatically continuous so questions relat-
ing to the continuity of the transformation can safely be ignored (and usually
are). However, when the spaces are infinite-dimensional this is certainly not the
case and the continuity, or otherwise, of individual linear transformations must
be studied much more carefully. In addition, we investigate the properties of
the entire set of linear operators between given normed vector spaces. In partic-
ular, it will be shown that this set is itself a normed vector space, and some of
the properties of this space will be discussed. Finally, for some linear operators
it is possible to define an inverse operator, and we conclude the chapter with a
characterization of the invertibility of an operator.

Spaces of linear operators for which the range space is the space of scalars
are of particular importance. Linear transformations with this property are
called linear functionals and spaces of continuous linear functionals are called
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74 Linear Functional Analysis

expansion (3.2) is the formula

x =
∞∑

n=1

(x, en)en (3.5)

(convergence of infinite series was defined in Definition 2.29). However, in the
infinite-dimensional setting there are two major questions associated with this
formula.

(a) Does the series converge?

(b) Does it converge to x?

We will answer these questions in a series of lemmas.

Lemma 3.41 (Bessel’s inequality)

Let X be an inner product space and let {en} be an orthonormal sequence in
X . For any x ∈ X the (real) series

∑∞
n=1 |(x, en)|2 converges and

∞∑

n=1

|(x, en)|2 ≤ ‖x‖2.

Proof

For each k ∈ N let yk =
∑k

n=1(x, en)en. Then,

‖x − yk‖2 = (x − yk, x − yk)

= ‖x‖2 −
k∑

n=1

(x, en)(x, en) −
k∑

n=1

(x, en)(en, x) + ‖yk‖2

= ‖x‖2 −
k∑

n=1

|(x, en)|2

(applying Theorem 3.22 to ‖yk‖2). Thus,

k∑

n=1

|(x, en)|2 = ‖x‖2 − ‖x − yk‖2 ≤ ‖x‖2,

and hence this sequence of partial sums is increasing and bounded above so the
result follows. %&

The next result gives conditions on the coefficients {αn} which guarantee
the convergence of a general series

∑∞
n=1 αnen.
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can be a source of confusion, so it is important to keep track of what space a
sequence lies in.

A rather more complicated, but extremely important, example is the fol-
lowing.

Example 3.39

The set of functions {en}, where en(x) = (2π)−1/2einx for n ∈ Z, is an or-
thonormal sequence in the space L2

C
[−π, π].

Solution

This follows from

(em, en) =
1

2π

∫ π

−π
ei(m−n)x dx =

{
1, if m = n,
0, if m #= n. $%

The orthonormal sequence in Example 3.39, and related sequences of
trigonometric functions, will be considered in more detail in Section 3.5 on
Fourier series. We also note that, strictly speaking, to use the word “sequence”
in Example 3.39 we should choose an ordering of the functions so that they are
indexed by n ∈ N, rather than n ∈ Z, but this is a minor point.

It follows immediately from part (a) of Lemma 3.20 that an orthonormal
sequence is linearly independent and if a space X contains an orthonormal
sequence then it must be infinite-dimensional. A converse result also holds.

Theorem 3.40

Any infinite-dimensional inner product space X contains an orthonormal se-
quence.

Proof

Using the construction in the proof of Theorem 2.26 we obtain a linearly in-
dependent sequence of unit vectors {xn} in X . Now, by inductively applying
the Gram–Schmidt algorithm (see the proof of part (b) of Lemma 3.20) to the
sequence {xn} we can construct an orthonormal sequence {en} in H. $%

For a general orthonormal sequence {en} in an infinite-dimensional inner
product space X and an element x ∈ X , the obvious generalization of the
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In general, an inner product can be defined on any finite-dimensional vector
space. We leave the solution of the next example, which is a generalization of
Examples 3.2 and 3.4, to Exercise 3.2.

Example 3.6

Let X be a k-dimensional vector space with basis {e1, . . . , ek}. Let x, y ∈ X
have the representation x =

∑k
n=1 λnen, y =

∑k
n=1 µnen. The function (· , ·) :

X × X → F defined by (x, y) =
∑k

n=1 λnµn, is an inner product on X .

Clearly, the above inner product depends on the basis chosen, and so we
only obtain a “standard” inner product when there is some natural “standard”
basis for the space.

Now let (X, Σ, µ) be a measure space, and recall the vector spaces Lp(X)
from Definition 1.53.

Example 3.7

If f, g ∈ L2(X) then fg ∈ L1(X) and the function (· , ·) : L2(X) × L2(X) → F

defined by (f, g) =
∫

X fg dµ is an inner product on L2(X). This inner product
will be called the standard inner product on L2(X).

Solution

Let f, g ∈ L2(X). Then by Hölder’s inequality, with p = q = 2 (Theorem 1.54)
and the definition of L2(X),

∫

X
|fg| dµ ≤

(∫

X
|f |2 dµ

)1/2 (∫

X
|g|2 dµ

)1/2

< ∞,

so fg ∈ L1(X) and the formula (f, g) =
∫

X fg dµ is well-defined. We now show
that the above formula defines an inner product on L2(X) by verifying that
all the properties in Definition 3.1 or 3.3 hold. It follows from the properties of
the integral described in Section 1.3 that:

(a) (f, f) =
∫

X |f |2 dµ ≥ 0;

(b) (f, f) = 0 ⇐⇒
∫

X |f |2 dµ = 0 ⇐⇒ f = 0 a.e.;

(c) (αf + βg, h) =
∫

X(αf + βg)h dµ = α
∫

X fh + β
∫

X gh = α(f, h) + β(g, h);

(d) (f, g) =
∫

X fg dµ =
∫

X gf dµ = (g, f). )*

The next example shows that the sequence space %2 defined in Example 1.56
is an inner product space. This is in fact a special case of the previous example,
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Ch. 1 Section 2: metric 
spaces

• M   –  compact, metric space

• F  –  field R or C

• CF(M)  [ aka C(M) ]   –  space of continuous functions 
from compact metric space M to field F endowed with 
the uniform metric

• C(M) is complete

• Stone-Weierstrass:  for  M subset R,                
P R is dense in CR(M)
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